
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Hand Gesture Robot Control

Joshua Cox
Mechanical Science and Engineering

University of Illinois Urbana-
Champaign

Champaign, United States
jgcox2@illinois.edu

Asher Mai
Electrical and Computer Engineering

University of Illinois at Urbana-
Champaign

Champaign, United States
hanlinm2@illinnois.edu

Ian Xu
Electrical and Computer Engineering

University of Illinois at Urbana-
Champaign

Champaign, United States
yiyangx6@illinois.edu

Abstract—Real time robotic arm control has evolved
tremendously in the past decade. Existing control methods
either require users to purchase additional hardware, or they do
not offer a natural experience. We introduce a new way to
control robotic arms using gestures. The implementation is fully
vision based, requiring only a desktop or laptop webcam,
without needing depth sensing. We demonstrate drawing and
pick-and-place tasks as a proof of concept. Our system runs in
real time on a CPU at about 10 frames per second. A video demo
is available at:
https://hanlinmai.web.illinois.edu/images/HRI.mp4

Keywords—gesture control, robotic arm, computer vision,
gesture detection, gesture recognition, teleoperation, telepresence,
pick and place, drawing task, real time control

I. INTRODUCTION

A. Motivation
Keyboards and hand-held controllers traditionally used for

gaming have become a popular tool to control robotic arms.
The buttons can control the end-effector’s actions, such as
gripper opening and closing while the joysticks on these
controllers can be used to move and rotate the robotic arm.
However, this is not as natural or fluid as using gestures.
Existing gesture controls involve using special hardware such
as gloves with inertial measurement units (IMU) and VR
controllers. The need for these hardware limits the scalability
of these systems, requiring the users to purchase addition
equipment.

Teleoperation and telepresence have also been a popular
area of research. They allow someone be “present” in the form
of a robot without physically being there. It has applications
in many domains, including search and rescue, remote
surgical work, and remote assistance. However, these systems
also suffer from the same problem of requiring additional
specialized equipment to control the robots.

Vision-based approach to robotic arm control allows the
system to be easy to use and scalable without needing special
hardware. However, it is challenging due to latency, variable
lighting conditions, and lack of depth information. We solve
these challenges by using a small neural network architecture
for gesture detection that has fast inference and generaliz-
ability to a wide range of lighting conditions. Gestures allow
us to control the robotic arm in the z-direction, so it eliminates
the need for depth information.

B. Overview of our system
We introduce a fully vision based and natural way of

controlling robotic arms. The only additional hardware
required is a common webcam that comes with most laptops
or a separate inexpensive desktop webcam that can be easily

purchased. There is no need for specialized depth sensing
cameras as we only use 2D image pixels for gesture
recognition and detection. Our vision system runs at about 10
FPS on a CPU without the need for a GPU.

The user controls the robot with two hands. The left hand
performs different gestures to control the end-effector’s
actions (turning on and off the vacuum gripper, etc.) and
movement in the z-direction, while the right hand’s index
fingertip moves the robot in the x- and y-direction.

We demonstrate two tasks accomplished by this method of
control: drawing and pick-and-place tasks. In drawing tasks,
the left hand’s fist and palm gesture controls the robot’s up
and down movement respectively. In pick-and-place task, the
left hand uses three gestures: palm, fist, and scissors, to control
both the robot’s vacuum gripper and the up and down motion.
In both tasks, the right hand’s index fingertip controls x- and
y-direction movements.

II. LITERATURE REVIEW
Our team reviewed similar teleoperation solutions

completed from around the world. These include a project
from MIT demonstrating teleoperation of a robot using an
Oculus Rift virtual reality headset and hand controllers.

Figure 1. Diagram showing our pipeline. We start by
capturing a video with a webcam, then run each frame
through our gesture and keypoint detection pipeline.
These information then gets translated into robot
workspace positions and robot actions that will be used
to accomplish drawing and pick and place tasks.

Webcam

Gesture and Hand Keypoint Detection

Coordinate
Transformation

Left Hand Gesture (palm, fist, etc.)

Right Hand Fingertip Location

Drawing Pick and Place

Velocity
Control

Position
Control

https://hanlinmai.web.illinois.edu/images/HRI.mp4

Solutions such as these demonstrate a unique human-

robot control scheme that is natural to humans: hand motions.
However, they usually require additional hardware or
technology, such as the headset and controllers pictured
above. Our solution aims to achieve this type of control with
minimal hardware. We demonstrate teleoperated control
using a computer and a USB camera.

III. METHODOLOGY

A. Gesture Recognition
We use a pre-trained SSDLiteMobileNetV3Large model

from HaGRID - HAnd Gesture Recognition Image Dataset
[1] for gesture detection. The model provides a bounding box
location of the gesture as well as the classification among 20
classes of gestures. We experimented with different detection
models, including SSDLiteMobileNetV3Large,
SSDLiteMobileNetV3Small, and
FRCNNMobilenetV3LargeFPN. We found that the FRCNN
based model provides the most accurate classification and
bounding box, but it’s very slow, running at less than 3
frames per second, which is unfit for the real time tasks that
we want to perform, such as drawing and pick-and-place
tasks. We also found that the Large version of SSDLite model
is more accurate than the Small version, with little to no
performance difference, both running at around 10 frames per
second. So we decided to use the
SSDLiteMobileNetV3Large model.

We use hand keypoint and landmark detection from

Mediapipe [2], which provides the locations of 21 hand joints
for each hand. We extract the location of location of the right
hand’s index fingertip in pixel coordinates.

Neigher [1] nor [2] provides information about whether
the hand is a left hand or a right hand. When there is only one
hand present, we set that hand as the right hand so that the
robot’s x- and y-direction movement can be controlled
without holding up both hands the whole time, preventing
fatigue for the user. In the case of two hands being present on
camera, we use locations to determine whether it's a left or
right hand. In hand gesture detection with [1], the hand with
leftmost top-left corner of the bounding box is determined as
the left hand. In hand landmark detection with [2], the hand
with the rightmost index fingertip location is the right hand.

We performed ablation experiment to see how it could
improve our system’s frames per second frequency. We find
that our system runs at about 10 frames per second with both
gesture detection and keypoint detection enabled, and it runs
at about 15 frames per second if one of them is disabled.

Gesture

Detection
Keypoint
Detection

Average
FPS

O O ~30
P O ~15
O P ~15
P P ~10

Table1. Ablation experiment to see if we could improve
frame rate if we eliminate some detection systems.

B. Coordinate Transformation
The locations provided by gesture detection and keypoint

detection systems are in the units of image pixels. We need
to translate these 2D points from the image space to the
physical workspace of the robot in units of centimeters. To
solve this problem, we added a coordinate transformation
layer. First, we define the top left corner and bottom right
corner in image space to be (𝑥!	, y!) 	= 	 (0, 0) and
(𝑥", 𝑦") = (w, h) where w and h are the width and height of
the image. Then we define the top left corner and bottom right
corner of the robot workspace as (X!	, Y!) and (X"	, Y")
respectively in units of centimeters. These two coordinates
are user defined and can be customized to adjust the
rectangular space that the user wants the robot to move
within. Then for every point (𝑥#	, y#)	 of the index fingertip
defined in the image space, we translate it into a point in robot
workspace (𝑥$, y$) with the following equations:

 𝑥% = 𝑋! +
𝑋" − 𝑋!
𝑥" − 𝑥!

∗ (𝑥& − 𝑥!)
(1)

 y% = Y! +

Y" − Y!
y" − y!

∗ (y& − y!)
(2
)

Figure 2. MIT Lab Robot Arm Teleoperation Demo

Figure3. The visualization of landmark detection and
gesture detection. Bounding box and red text shows the
location of gestures and classification of the gesture
respectively. Green dots connected by green line
segments show the keypoints detected in each hand.

C. Gesture to Action Mapping
For drawing task, it is straight forward to map one gesture

for going up, and one gesture for going down where the pen
contacts the paper. We mapped “palm” gesture to “going up”
and “fist” gesture to “going down”.

For pick and place task, it is not so straight forward
because the action of going up and going down need to be
coupled with the action of turning on and off the gripper. We
first listed the steps it requires to do pick and place tasks:

1. Going down with vacuum gripper turned on
2. Going up with vacuum gripper turned on after

picking up object
3. Moving to destination with the gripper turned on and

in an up position
4. Going down with vacuum gripper turned on
5. Going up with vacuum gripped turned off

We notice that steps 1 and 4 can be grouped into one

gesture, steps 2 and 3 can be grouped into another gesture. So
we decided that we only need three gestures:

• Fist: Going down and turn on vacuum gripper
• Scissors: Going up and with the vacuum gripper still

on
• Palm: Going up with the vacuum gripper turned off

D. Control
We opt for the velocity controller over the position

controller when selecting between the two types of robot
controllers for the drawing task.

Position control directly regulates the position of the robot
component, the end-effector in our case. It’s widely used in
tasks which require high-precision or any robotic system
where exact positioning is crucial. However, position control
might not be the best choice for applications requiring
constant movement because it tends to make the movement
of the system discontinuous between each waypoint as it will
come to a complete stop at each target position before
proceeding to the next. In other words, there are necessary
transitions between waypoints. Even though many methods
could increase the smoothness of the transition, such as S-
Curve Motion Profiles, Predictive Control, or mechanisms
that ensure soft start and stop, the motion inherently involves
moving from one point to another, which introduces some
level of discontinuity. For the drawing task, while precision
is important, the continuity of the motion is much more
crucial as people usually do not appreciate broken lines in
artworks.

Velocity control consists of two main components: speed
regulation and direction control. It regulates the speed of the
robot’s moving part, the end-effector in our case; it also
controls the direction of movement, ensuring the robot moves
along the desired path. Under this system, the robot moves
continuously, maintaining its direction and speed until the
new command is received.

We used functions from the ‘ur_rtde’ library, a software
interface designed for real-time data exchange with Universal
Robots (UR) robotic arms, to get the information of the
current position and velocity of the TCP, as well as
controlling the robot.

For velocity controller, we use ‘speedL’ function from the
‘ur_rtde’ library, it enables us to command the robot to move
its end-effector with a specified linear velocity, in other

words, the end-effector will move in a straight line at a
constant speed. The function parameters include the velocity
vector, acceleration, and the duration that the motion should
be executed. The velocity vector is a 3D vector representing
the desired linear velocity in Cartesian space, and the
acceleration is the rate that the end-effector will reach the
desired velocity.

We use PD control to generate the control input for
tracking the target path accurately:

𝑢(𝑡) = 𝐾' ∙ 𝑒(𝑡) + 𝐾(∙
𝑒(𝑡) − 𝑒(𝑡 − 1)

𝛥𝑡

(3)

where	𝑢(𝑡) ∈ ℝ)	denotes	the	control	input,	𝐾'	and	𝐾(are	
control	 gains,	𝑒(𝑡) ∈ ℝ)denotes	 the	 position	 error,	 and	
we	approximate	the	derivative	of	position	error	using	𝛥𝑡,	
the	time	interval	between	the	current	and	previous	error	
measurements.		

To	fine-tune	the	responsiveness	of	the	system,	we	add	
a	scalar	multiplier	to	the	original	control	signal	𝑢(𝑡):	

	
 𝑢*(𝑡) = 𝛼 ∙ 𝑢(𝑡) (4)

where	𝑢*(𝑡) ∈ ℝ)denotes	the	scaled	control	signal,	and	𝛼	
is	the	scalar	value	used	to	scale	the	control	signal.	

We update and send the ‘speedL’ command to the system
every 5ms. We have observed that using a higher control
frequency can overwhelm the system, causing the frame rate
to drop below one frame per second.

E. Utensil Holder
Our initial goal for this project was to use gesture

recognition in order to make a robot arm draw using some
form of writing utensil. This required a utensil holder that
would fit onto the existing UR3 robot arms available to us.
Later, we switched to the default vacuum UR3 end effector
in order to control the arm doing pick-and-place tasks with
blocks.

The utensil holder featured a mounting system for a
writing device such as the red sharpie we used for this project.
A nut was inserted into the print in order to lock the sharpie
into place with a bolt. The holder needed to be printed in two
pieces, so they were bolted together after being mounted. It
was important the locking mechanism for the pen be
adjustable in order to lower the sharpie such that it did not
interfere with the default end effector.

The utensil holder was designed in Creo (a CAD software)
and subsequently 3D printed. Below are several pictures of
this design and the intermediate pieces created in order to
reiterate and improve on the fit.

The initial design in Figure 4 was a bit unrefined – the fit
with the robot arm was bad resulting in the entire mount
wobbling. This would not work well for a task requiring a
static pen. The holder was redesigned as shown in Figure 5.
Pictures of the bolt nut slot and the printed and tested holders
are also shown in Figures 6-8.

 A design change that ended up helping was to CAD
the UR3 end effector to begin with. This allowed for more
accurate measurements and a better fit to be made.

Figure 4. Initial Utensil Holder CAD

Figure 5. Final Utensil Holder CAD

Figure 6. Bolt Nut Slot

Figure 7. Final Utensil Holder Mounted (Initial

Prototype Below)

Figure 8. Pen Locking Mechanism

IV. RESULTS

A. Gesture Recognition
In our experiments, we are able to see that the gesture

recognition and keypoint detection works well enough for our
purposes, with very occasion misdetection or
misclassification that don’t critically damage the user
experience. Our 10-frame-per-second system allows real time
feedback of the user’s intended gesture.

We do find, however, that having two gestures at the same
time limits the range of the right hand. Because the left hand
has to be present in the image, the right hand cannot move too
much to the left so as to overlap with the left hand. Thus, it
limits the pick and place task to a rectangular region no more
left than the left hand.

B. Control
We conducted tests on the controller by performing the

following experiments: the robot's trajectory was hardcoded
to follow (1) straight lines, (2) rectangles, and (3) circles. We
then evaluated whether the movement was continuous and
smooth, and assessed if the end-effector consistently reached
the designated target positions during the movement, such as
the corners of the rectangles. After performing multiple trials,
the results showed that the controller was able to achieve
continuous and smooth movement, and the end-effector
accurately reached target positions in every trial.

We conducted similar experiments for testing the
performance of the real-time control capabilities, specifically
its responsiveness to hand movements and its precision.
Instead of predefined trajectories, we passed the coordinates
of the hand to the system and facilitated teleoperation. While
the robot could still move smoothly in human-intended
trajectories, we noticed that there was always a delay between
hand movements and the corresponding robot movements.
We believe the latency is due to the limitation of computing
power of the lab computer.

C. Utensil Holder
The utensil holder worked well to demonstrate the initial

idea of the project. However, simply locking the pen in place
is not the best solution due to uneven surfaces. As shown in

Figure 10, not all lines were an even thickness. This happens
because the pen tip “misses” the surface as it dips. A way to
avoid this would be a spring-loaded mechanism to apply
roughly constant pressure on the paper.

A drawback of how the pen holder was set up is that it is
not realistic to how humans draw or write. Humans angle
writing devices which vary line thickness and writing style
greatly. More degrees of freedom of the end joint and force
control would be required to create a human-accurate drawing
robot. The design we created is simple enough for transferring
gestures to paper, however.

Other applications of this kind of gesture recognition
would require different end effectors. Creating 3D models
and subsequently printing, iterating, and redesigning end
effector accessories allows for quick prototyping, an
important skill in the engineering world.

D. Drawing Task
As previously mentioned, we utilized left-hand gestures

to signal the robot to either raise or lower its arm, enabling
the sharpie to make contact with the canvas, and we used the
landmark of right hand’s index finger to teleoperate the end-
effector. Experiments were conducted with the aim of having
the robot draw various shapes on the canvas.

The system was capable of drawing shapes such as
rectangles, straight or curved lines, and circles. However, the
results were not perfect as we initially expected. For instance,
while we were able to draw a star (see Fig. 10), there were
discontinuities which might be caused by delays or
inconsistent application of pressure from the sharpie to the
canvas.

Figure 9. UR3 End Effector CAD Model

Figure 10. Five-Point Star Drawn via Teleoperation

E. Pick-and-place Task
We implemented three distinct gestures for left hand--fist,

peace, and palm--to turn on the suction cup and lower the arm,
raise the arm, and turn off the suction cup and raise the arm,
respectively. Considering that the pick-and-place task does
not require continuous and smooth movement, we
implemented the position controller to facilitate a comparison
with the velocity controller utilized in the drawing task (see
Fig. 10). As expected, the movement of the end-effector was
discontinuous, however, the system was capable of executing
all the fundamental functions: the robot was able to relocate
the blocks in response to the commands issued by both hands.

V. CONCLUSION
Our robotic arm control demonstrated the possibility of

vision-based real-time gesture control. We were able to

successfully draw with the robot and complete simple pick-
and-place tasks. This implementation required no wearable
hardware, only the recognition of proper hand gestures was
needed to control the robot.

We learned that this implementation is limited by the
computational ability of whatever computer it is running on.
The tasks were completed slowly with a real-time FPS of 10,
and we experienced noticeable delay between the hand
movement and the robot movement. This could be a possible
trade off with other methods that require additional hardware
such as motions sensors or virtual reality devices.

For future directions, upgrading the hardware to support
higher control frequencies and more powerful processing
capabilities is essential. Such upgrades are expected to reduce
the latency and improve responsiveness. Furthermore, we can
expand the system’s capabilities to other applications such as
manufacturing processes, interactive education tools, etc.
Finally, we can develop a more intuitive user interface, and
possibly incorporating with AR/VR technologies to make the
system more accessible.

REFERENCES
[1] Kapitanov, Alexander, Andrew Makhlyarchuk, and Karina

Kvanchiani. "Hagrid-hand gesture recognition image dataset." (2022).
[2] Mediapipe hands.

https://developers.google.com/mediapipe/solutions/vision/hand_land
marker, 2019.

Figure 11. Pick and place task. The image shows the

user using “scissors” gesture to pick up the block.

