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Abstract—Real time robotic arm control has evolved 
tremendously in the past decade. Existing control methods 
either require users to purchase additional hardware, or they do 
not offer a natural experience. We introduce a new way to 
control robotic arms using gestures. The implementation is fully 
vision based, requiring only a desktop or laptop webcam, 
without needing depth sensing. We demonstrate drawing and 
pick-and-place tasks as a proof of concept. Our system runs in 
real time on a CPU at about 10 frames per second. A video demo 
is available at:   
https://hanlinmai.web.illinois.edu/images/HRI.mp4 
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I. INTRODUCTION 

A. Motivation 
Keyboards and hand-held controllers traditionally used for 

gaming have become a popular tool to control robotic arms. 
The buttons can control the end-effector’s actions, such as 
gripper opening and closing while the joysticks on these 
controllers can be used to move and rotate the robotic arm. 
However, this is not as natural or fluid as using gestures. 
Existing gesture controls involve using special hardware such 
as gloves with inertial measurement units (IMU) and VR 
controllers. The need for these hardware limits the scalability 
of these systems, requiring the users to purchase addition 
equipment.  

Teleoperation and telepresence have also been a popular 
area of research. They allow someone be “present” in the form 
of a robot without physically being there. It has applications 
in many domains, including search and rescue, remote 
surgical work, and remote assistance. However, these systems 
also suffer from the same problem of requiring additional 
specialized equipment to control the robots.  

Vision-based approach to robotic arm control allows the 
system to be easy to use and scalable without needing special 
hardware. However, it is challenging due to latency, variable 
lighting conditions, and lack of depth information. We solve 
these challenges by using a small neural network architecture 
for gesture detection that has fast inference and generaliz-
ability to a wide range of lighting conditions. Gestures allow 
us to control the robotic arm in the z-direction, so it eliminates 
the need for depth information.  

B. Overview of our system 
We introduce a fully vision based and natural way of 

controlling robotic arms. The only additional hardware 
required is a common webcam that comes with most laptops 
or a separate inexpensive desktop webcam that can be easily 

purchased. There is no need for specialized depth sensing 
cameras as we only use 2D image pixels for gesture 
recognition and detection. Our vision system runs at about 10 
FPS on a CPU without the need for a GPU.  

The user controls the robot with two hands. The left hand 
performs different gestures to control the end-effector’s 
actions (turning on and off the vacuum gripper, etc.) and 
movement in the z-direction, while the right hand’s index 
fingertip moves the robot in the x- and y-direction.  

We demonstrate two tasks accomplished by this method of 
control: drawing and pick-and-place tasks. In drawing tasks, 
the left hand’s fist and palm gesture controls the robot’s up 
and down movement respectively. In pick-and-place task, the 
left hand uses three gestures: palm, fist, and scissors, to control 
both the robot’s vacuum gripper and the up and down motion. 
In both tasks, the right hand’s index fingertip controls x- and 
y-direction movements.  

II. LITERATURE REVIEW 
Our team reviewed similar teleoperation solutions 

completed from around the world. These include a project 
from MIT demonstrating teleoperation of a robot using an 
Oculus Rift virtual reality headset and hand controllers. 

 

 
Figure 1. Diagram showing our pipeline. We start by 
capturing a video with a webcam, then run each frame 
through our gesture and keypoint detection pipeline. 
These information then gets translated into robot 
workspace positions and robot actions that will be used 
to accomplish drawing and pick and place tasks.  
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Solutions such as these demonstrate a unique human-

robot control scheme that is natural to humans: hand motions. 
However, they usually require additional hardware or 
technology, such as the headset and controllers pictured 
above. Our solution aims to achieve this type of control with 
minimal hardware. We demonstrate teleoperated control 
using a computer and a USB camera. 

III. METHODOLOGY 

A. Gesture Recognition 
We use a pre-trained SSDLiteMobileNetV3Large model 

from HaGRID - HAnd Gesture Recognition Image Dataset 
[1] for gesture detection. The model provides a bounding box 
location of the gesture as well as the classification among 20 
classes of gestures. We experimented with different detection 
models, including SSDLiteMobileNetV3Large, 
SSDLiteMobileNetV3Small, and 
FRCNNMobilenetV3LargeFPN. We found that the FRCNN 
based model provides the most accurate classification and 
bounding box, but it’s very slow, running at less than 3 
frames per second, which is unfit for the real time tasks that 
we want to perform, such as drawing and pick-and-place 
tasks. We also found that the Large version of SSDLite model 
is more accurate than the Small version, with little to no 
performance difference, both running at around 10 frames per 
second. So we decided to use the 
SSDLiteMobileNetV3Large model. 

 

 
We use hand keypoint and landmark detection from 

Mediapipe [2], which provides the locations of 21 hand joints 
for each hand. We extract the location of location of the right 
hand’s index fingertip in pixel coordinates.  

Neigher [1] nor [2] provides information about whether 
the hand is a left hand or a right hand. When there is only one 
hand present, we set that hand as the right hand so that the 
robot’s x- and y-direction movement can be controlled 
without holding up both hands the whole time, preventing 
fatigue for the user. In the case of two hands being present on 
camera, we use locations to determine whether it's a left or 
right hand. In hand gesture detection with [1], the hand with 
leftmost top-left corner of the bounding box is determined as 
the left hand. In hand landmark detection with [2], the hand 
with the rightmost index fingertip location is the right hand.  

We performed ablation experiment to see how it could 
improve our system’s frames per second frequency. We find 
that our system runs at about 10 frames per second with both 
gesture detection and keypoint detection enabled, and it runs 
at about 15 frames per second if one of them is disabled.  

 
Gesture 

Detection 
Keypoint 
Detection 

Average 
FPS 

O O ~30 
P O ~15 
O P ~15 
P P ~10 

Table1. Ablation experiment to see if we could improve 
frame rate if we eliminate some detection systems. 

B. Coordinate Transformation 
The locations provided by gesture detection and keypoint 

detection systems are in the units of image pixels. We need 
to translate these 2D points from the image space to the 
physical workspace of the robot in units of centimeters. To 
solve this problem, we added a coordinate transformation 
layer. First, we define the top left corner and bottom right 
corner in image space to be (𝑥!	, y!) 	= 	 (0, 0)  and 
(𝑥", 𝑦") = (w, h) where w and h are the width and height of 
the image. Then we define the top left corner and bottom right 
corner of the robot workspace as (X!	, Y!)  and (X"	, Y") 
respectively in units of centimeters. These two coordinates 
are user defined and can be customized to adjust the 
rectangular space that the user wants the robot to move 
within. Then for every point (𝑥#	, y#)	 of the index fingertip 
defined in the image space, we translate it into a point in robot 
workspace (𝑥$	, y$) with the following equations: 

 𝑥% = 𝑋! +
𝑋" − 𝑋!
𝑥" − 𝑥!

∗ (𝑥& − 𝑥!) 
(1) 
 

   

 
 y% = Y! +

Y" − Y!
y" − y!

∗ (y& − y!) 
(2
) 
 

   

 
Figure 2. MIT Lab Robot Arm Teleoperation Demo 

 
Figure3. The visualization of landmark detection and 
gesture detection. Bounding box and red text shows the 
location of gestures and classification of the gesture 
respectively. Green dots connected by green line 
segments show the keypoints detected in each hand.  



C. Gesture to Action Mapping 
For drawing task, it is straight forward to map one gesture 

for going up, and one gesture for going down where the pen 
contacts the paper. We mapped “palm” gesture to “going up” 
and “fist” gesture to “going down”.  

For pick and place task, it is not so straight forward 
because the action of going up and going down need to be 
coupled with the action of turning on and off the gripper. We 
first listed the steps it requires to do pick and place tasks: 

1. Going down with vacuum gripper turned on 
2. Going up with vacuum gripper turned on after 

picking up object 
3. Moving to destination with the gripper turned on and 

in an up position 
4. Going down with vacuum gripper turned on 
5. Going up with vacuum gripped turned off 

 
We notice that steps 1 and 4 can be grouped into one  

gesture, steps 2 and 3 can be grouped into another gesture. So 
we decided that we only need three gestures: 

• Fist: Going down and turn on vacuum gripper 
• Scissors: Going up and with the vacuum gripper still 

on 
• Palm: Going up with the vacuum gripper turned off 

D. Control 
We opt for the velocity controller over the position 

controller when selecting between the two types of robot 
controllers for the drawing task.  

Position control directly regulates the position of the robot 
component, the end-effector in our case. It’s widely used in 
tasks which require high-precision or any robotic system 
where exact positioning is crucial. However, position control 
might not be the best choice for applications requiring 
constant movement because it tends to make the movement 
of the system discontinuous between each waypoint as it will 
come to a complete stop at each target position before 
proceeding to the next. In other words, there are necessary 
transitions between waypoints. Even though many methods 
could increase the smoothness of the transition, such as S-
Curve Motion Profiles, Predictive Control, or mechanisms 
that ensure soft start and stop, the motion inherently involves 
moving from one point to another, which introduces some 
level of discontinuity. For the drawing task, while precision 
is important, the continuity of the motion is much more 
crucial as people usually do not appreciate broken lines in 
artworks. 

Velocity control consists of two main components: speed 
regulation and direction control. It regulates the speed of the 
robot’s moving part, the end-effector in our case; it also 
controls the direction of movement, ensuring the robot moves 
along the desired path. Under this system, the robot moves 
continuously, maintaining its direction and speed until the 
new command is received. 

We used functions from the ‘ur_rtde’ library, a software 
interface designed for real-time data exchange with Universal 
Robots (UR) robotic arms, to get the information of the 
current position and velocity of the TCP, as well as 
controlling the robot.  

For velocity controller, we use ‘speedL’ function from the 
‘ur_rtde’ library, it enables us to command the robot to move 
its end-effector with a specified linear velocity, in other 

words, the end-effector will move in a straight line at a 
constant speed. The function parameters include the velocity 
vector, acceleration, and the duration that the motion should 
be executed. The velocity vector is a 3D vector representing 
the desired linear velocity in Cartesian space, and the 
acceleration is the rate that the end-effector will reach the 
desired velocity. 

We use PD control to generate the control input for 
tracking the target path accurately: 

 
 

𝑢(𝑡) = 𝐾' ∙ 𝑒(𝑡) + 𝐾( ∙
𝑒(𝑡) − 𝑒(𝑡 − 1)

𝛥𝑡  
 
(3) 
 

where	𝑢(𝑡) ∈ ℝ)	denotes	the	control	input,	𝐾'	and	𝐾(	are	
control	 gains,	𝑒(𝑡) ∈ ℝ)denotes	 the	 position	 error,	 and	
we	approximate	the	derivative	of	position	error	using	𝛥𝑡,	
the	time	interval	between	the	current	and	previous	error	
measurements.		

To	fine-tune	the	responsiveness	of	the	system,	we	add	
a	scalar	multiplier	to	the	original	control	signal	𝑢(𝑡):	

	
 𝑢*(𝑡) = 𝛼 ∙ 𝑢(𝑡) (4) 

 
where	𝑢*(𝑡) ∈ ℝ)denotes	the	scaled	control	signal,	and	𝛼	
is	the	scalar	value	used	to	scale	the	control	signal.	

We update and send the ‘speedL’ command to the system 
every 5ms. We have observed that using a higher control 
frequency can overwhelm the system, causing the frame rate 
to drop below one frame per second.  

E. Utensil Holder 
Our initial goal for this project was to use gesture 

recognition in order to make a robot arm draw using some 
form of writing utensil. This required a utensil holder that 
would fit onto the existing UR3 robot arms available to us. 
Later, we switched to the default vacuum UR3 end effector 
in order to control the arm doing pick-and-place tasks with 
blocks. 

The utensil holder featured a mounting system for a 
writing device such as the red sharpie we used for this project. 
A nut was inserted into the print in order to lock the sharpie 
into place with a bolt. The holder needed to be printed in two 
pieces, so they were bolted together after being mounted. It 
was important the locking mechanism for the pen be 
adjustable in order to lower the sharpie such that it did not 
interfere with the default end effector. 

The utensil holder was designed in Creo (a CAD software) 
and subsequently 3D printed. Below are several pictures of 
this design and the intermediate pieces created in order to 
reiterate and improve on the fit. 

The initial design in Figure 4 was a bit unrefined – the fit 
with the robot arm was bad resulting in the entire mount 
wobbling. This would not work well for a task requiring a 
static pen. The holder was redesigned as shown in Figure 5. 
Pictures of the bolt nut slot and the printed and tested holders 
are also shown in Figures 6-8. 



 
 

 
 

 
 

 
 

 
 

 A design change that ended up helping was to CAD 
the UR3 end effector to begin with. This allowed for more 
accurate measurements and a better fit to be made. 

 
Figure 4. Initial Utensil Holder CAD 

 
Figure 5. Final Utensil Holder CAD 

 
Figure 6. Bolt Nut Slot 

 
Figure 7. Final Utensil Holder Mounted (Initial 

Prototype Below) 

 
Figure 8. Pen Locking Mechanism 



 

IV. RESULTS 

A. Gesture Recognition 
In our experiments, we are able to see that the gesture 

recognition and keypoint detection works well enough for our 
purposes, with very occasion misdetection or 
misclassification that don’t critically damage the user 
experience. Our 10-frame-per-second system allows real time 
feedback of the user’s intended gesture.  

We do find, however, that having two gestures at the same 
time limits the range of the right hand. Because the left hand 
has to be present in the image, the right hand cannot move too 
much to the left so as to overlap with the left hand. Thus, it 
limits the pick and place task to a rectangular region no more 
left than the left hand.  

B. Control 
We conducted tests on the controller by performing the 

following experiments: the robot's trajectory was hardcoded 
to follow (1) straight lines, (2) rectangles, and (3) circles. We 
then evaluated whether the movement was continuous and 
smooth, and assessed if the end-effector consistently reached 
the designated target positions during the movement, such as 
the corners of the rectangles. After performing multiple trials, 
the results showed that the controller was able to achieve 
continuous and smooth movement, and the end-effector 
accurately reached target positions in every trial. 

We conducted similar experiments for testing the 
performance of the real-time control capabilities, specifically 
its responsiveness to hand movements and its precision. 
Instead of predefined trajectories, we passed the coordinates 
of the hand to the system and facilitated teleoperation. While 
the robot could still move smoothly in human-intended 
trajectories, we noticed that there was always a delay between 
hand movements and the corresponding robot movements. 
We believe the latency is due to the limitation of computing 
power of the lab computer. 

C. Utensil Holder 
The utensil holder worked well to demonstrate the initial 

idea of the project. However, simply locking the pen in place 
is not the best solution due to uneven surfaces. As shown in 

Figure 10, not all lines were an even thickness. This happens 
because the pen tip “misses” the surface as it dips. A way to 
avoid this would be a spring-loaded mechanism to apply 
roughly constant pressure on the paper. 

A drawback of how the pen holder was set up is that it is 
not realistic to how humans draw or write. Humans angle 
writing devices which vary line thickness and writing style 
greatly. More degrees of freedom of the end joint and force 
control would be required to create a human-accurate drawing 
robot. The design we created is simple enough for transferring 
gestures to paper, however. 

Other applications of this kind of gesture recognition 
would require different end effectors. Creating 3D models 
and subsequently printing, iterating, and redesigning end 
effector accessories allows for quick prototyping, an 
important skill in the engineering world. 

 

D. Drawing Task 
As previously mentioned, we utilized left-hand gestures 

to signal the robot to either raise or lower its arm, enabling 
the sharpie to make contact with the canvas, and we used the 
landmark of right hand’s index finger to teleoperate the end-
effector.  Experiments were conducted with the aim of having 
the robot draw various shapes on the canvas. 

The system was capable of drawing shapes such as 
rectangles, straight or curved lines, and circles. However, the 
results were not perfect as we initially expected. For instance, 
while we were able to draw a star (see Fig. 10), there were 
discontinuities which might be caused by delays or 
inconsistent application of pressure from the sharpie to the 
canvas. 

 
 

 
Figure 9. UR3 End Effector CAD Model 

 
Figure 10. Five-Point Star Drawn via Teleoperation 



E. Pick-and-place Task 
We implemented three distinct gestures for left hand--fist, 

peace, and palm--to turn on the suction cup and lower the arm, 
raise the arm, and turn off the suction cup and raise the arm, 
respectively. Considering that the pick-and-place task does 
not require continuous and smooth movement, we 
implemented the position controller to facilitate a comparison 
with the velocity controller utilized in the drawing task (see 
Fig. 10). As expected, the movement of the end-effector was 
discontinuous, however, the system was capable of executing 
all the fundamental functions: the robot was able to relocate 
the blocks in response to the commands issued by both hands. 

 

V. CONCLUSION 
Our robotic arm control demonstrated the possibility of 

vision-based real-time gesture control. We were able to 

successfully draw with the robot and complete simple pick-
and-place tasks. This implementation required no wearable 
hardware, only the recognition of proper hand gestures was 
needed to control the robot.  

We learned that this implementation is limited by the 
computational ability of whatever computer it is running on. 
The tasks were completed slowly with a real-time FPS of 10, 
and we experienced noticeable delay between the hand 
movement and the robot movement. This could be a possible 
trade off with other methods that require additional hardware 
such as motions sensors or virtual reality devices. 

For future directions, upgrading the hardware to support 
higher control frequencies and more powerful processing 
capabilities is essential. Such upgrades are expected to reduce 
the latency and improve responsiveness. Furthermore, we can 
expand the system’s capabilities to other applications such as 
manufacturing processes, interactive education tools, etc. 
Finally, we can develop a more intuitive user interface, and 
possibly incorporating with AR/VR technologies to make the 
system more accessible. 
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Figure 11. Pick and place task. The image shows the 

user using “scissors” gesture to pick up the block. 


