
Classical Method on New Datasets: Pedestrian Detection with HOG and CNN

Asher Mai
hanlinm2@illinois.edu

Matthew Tang
mhtang2@illinois.edu

Sid Ahuja
ahuja12@illinois.edu

Summary
As neural network models get larger and more capable, the time it takes to train them are also getting progressively longer.
This project aims to reduce the training and inference time of pedestrian detection task by pre-processing the images into
Histogram of Oriented Gradients (HOG) Descriptors [1]. Our results show that training neural networks on HOG features
instead of images pixels can provide up to 125 times speed up in training time, while maintaining comparable accuracy at
the same time.

Method
We train 4 neural network models:
1. A ResNet18 [3] with RGB image pixels as input
2. A ResNet18 with derived HOG feature descriptors as input
3. A 1-layer Convolutional Neural Network (CNN) with HOG feature descriptors as input
4. A fully connected neural network with HOG feature descriptors as input
Given an image, our models detect whether there is a pedestrian in the image or not. We compare the accuracy, precision,
recall, receiver operating characteristic (ROC) curves, and time it takes to train one epoch. We aim to find out the speed/ac-
curacy trade off of these four models.

Figure 1. The schematic represents our pipeline

Result
Our results show that training ResNet18 on HOG feature descriptors gives us a high accuracy of 98.1%, compared to 99.6%
on ResNet18 trained on raw image pixels. The former only takes 3.8 seconds to train one epoch on a GPU while the latter
takes 475.88 seconds, giving us a 125.23× speed up.

1



Abstract

Neural network models are increasingly becoming
deeper, more capable, and larger, having more parameters.
However, while they are able to solve challenging tasks with
high accuracy, it is also becoming harder and harder to
train these deep neural networks in terms of time and the
computational resources needed. Our project aims to re-
duce the training time and computational resources needed,
by training a neural network with Histogram of Oriented
Gradients (HOG) feature descriptors [1] to detect the pres-
ence (or absence) of a pedestrian in a given image. We
show that training a ResNet18 [3] on HOG feature descrip-
tors have a 125× speed up compared to training on image
pixels, while maintaining comparable accuracy at 98.1%
compared to 99.6%.

1. Introduction
In the realm of computer vision, the detection of pedes-
trians within an image is a critical challenge with signifi-
cant implications for various applications, ranging from au-
tonomous vehicles to surveillance systems. This project
aims to explore and evaluate different methodologies for
pedestrian detection, focusing on their effectiveness and ef-
ficiency. The core of this investigation involves the devel-
opment and comparison of four distinct classifiers:
1. A ResNet18 [3] with RGB image pixels as input
2. A ResNet18 with derived HOG feature descriptors as in-

put
3. A 1-layer Convolutional Neural Network (CNN) with

HOG feature descriptors as input
4. A fully-connected neural network with HOG feature de-

scriptors as input
The first classifier is trained directly on the pixel values

of RGB images. This approach leverages the raw visual
data as input, hypothesizing that the color and intensity vari-
ations within these images can provide sufficient informa-
tion for effective pedestrian detection.

In contrast, the second classifier is trained using His-
togram of Gradients (HoG) feature descriptors. The HoG
method focuses on the structure or the shape of objects
within the image by capturing the direction and magnitude
of brightness gradients, as illustrated in Figure 2. This ap-
proach is grounded in the theory that the outline and texture
of pedestrians can be more distinctive and informative than
their color information, especially in diverse lighting condi-
tions.

The third classifier also takes HOG feature descriptors
as input, but it consists of only one convolutional layer fol-
lowed by a fully-connected layer. This classifier allows
us to potentially visualize what the feature descriptor of a
pedestrian might look like.

Finally, the fourth classifier only consists of one fully-
connected layer. Convolutional neural networks such as the
ResNet [3] and VGG [7] are made up of two steps: fea-
ture extraction and classification. Feature extraction usually
consists of multiple convolutional layers and the classifica-
tion step uses one or more fully-connected layers. We no-
tice that the HOG feature descriptors themselves are already
a type of feature extration, allowing us to skip the first step
and go straight into the classification step. This motivated
us to experiment with this classifier.

Figure 2. The gradient of each pixel used to calculate HOG feature
descriptors, represented by direction and magnitude. [6]

The comparison of these four classifiers will be con-
ducted through several key metrics: accuracy, precision,
recall, and training time. Accuracy measures the over-
all effectiveness of the classifier in identifying pedestrians
correctly. Precision evaluates how many of the identified
”pedestrian” cases were actually pedestrians, while recall
assesses how many of the actual pedestrians were correctly
identified by the classifier. Training time is also a critical
factor, as it reflects the practicality and efficiency of each
method in real-world applications.

Through this project, we aim to gain insights into the
strengths and limitations of each approach, providing a
comprehensive understanding of their practicality in the
field of pedestrian detection. This will not only contribute
to the academic understanding of image processing tech-
niques but also have practical implications in enhancing the
performance of systems where pedestrian detection is a cru-
cial component.

2. Background
2.1. Training Dataset

The “ROAD++” dataset [5], an extension of the original
“ROAD” dataset, is utilized for this project. This dataset
comprises around 55, 000 videos from the Waymo Open
Dataset [8], each 20 seconds long, and spans various U.S.
cities. It’s a multi-label, multi-instance dataset with approx-
imately 4.6 million detection bounding boxes, including 3.9
million agent labels, 4.3 million action labels, and 4.2 mil-
lion location labels.



Figure 3. The schematic represents our pipeline

Figure 4. Sample images from the Road++ dataset [5]. The pedestrians can appear at many locations and in different scales. These images
are always taken from the perspective of a car driving on the road, and span across a wide variety of weather and lighting conditions, as
well as different urban and suburban areas.

Pedestrians are a key aspect of this dataset. Each road
event in “ROAD++” is defined by agents, actions, and lo-
cations, with pedestrians being a significant category of
agents. The dataset includes diverse pedestrian actions like
walking, turning, or moving away, annotated with precise
bounding boxes. This rich pedestrian-focused data makes
“ROAD++” ideal for training models in pedestrian detec-
tion, providing a nuanced understanding of pedestrian be-
havior in urban settings.

Due to hardware limitations, we utilized a subset of
the dataset comprising 100 videos, totaling around 18, 000
frames. This selection still ensures a rich and varied dataset,
maintaining the focus on pedestrian data, which is essential
for our project’s objectives.

2.2. Histogram of Gradients

The Histogram of Gradients (HoG) is a key feature de-
scriptor in the realm of computer vision, particularly in ob-
ject detection tasks. It operates by analyzing the direction
and magnitude of color intensity gradients within an image.

This process effectively captures the contours and edges of
objects, translating visual data into a numerical form that
can be processed by machine learning models. HoG has
been instrumental in enhancing the accuracy of object de-
tection algorithms, particularly in complex visual environ-
ments.

In pedestrian detection, HoG descriptors are pivotal due
to their ability to capture the shape and silhouette of a hu-
man figure. They are adept at differentiating between pedes-
trian and non-pedestrian elements in an image by examin-
ing the structure of gradients. This makes HoG particularly
effective in environments where the color or texture of the
background is similar to that of the pedestrians, as it relies
more on form than color or texture contrasts.

2.3. Existing work

After receiving feedback on our initial project proposal, we
were suggested to look at two existing works which lever-
age HOG in image networks. The first attempts to pretrain
a network by having it learn to compute the HOG of an im-



1 image_paths = glob.glob("./road-waymo/rgb-images/*/*")
2 hog_paths = [path.replace(".jpg", ".npy") for path in image_paths]
3 hog_paths = [path.replace("rgb-images", "hog-images") for path in hog_paths]
4

5 for image_path in tqdm(image_paths, desc = "Extract HOG"):
6

7 # reading the image
8 img = imread(image_path)
9 img = cv2.resize(img, (0, 0), fx = 0.3, fy = 0.3)

10

11 # Extract HOG feature descriptor and visualization
12 fd, hog_image = hog(img, orientations=9, pixels_per_cell=(16, 16),
13 cells_per_block=(2, 2), visualize=True, feature_vector=False, channel_axis=-1)
14

15 # Rescale histogram for better display
16 hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10))
17

18 # make path for hog image visualizations
19 hog_image_path = image_path.replace("rgb-images", "hog-images")
20 hog_image_dirname = os.path.dirname(hog_image_path)
21 Path(hog_image_dirname).mkdir(parents=True, exist_ok = True)
22 plt.imsave(hog_image_path, hog_image_rescaled, cmap = "gray")
23

24 # make path for hog feature descriptors
25 hog_fd_path = image_path.replace(".jpg", ".npy").replace("rgb-images", "hog-fd")
26 hog_fd_dirname = os.path.dirname(hog_fd_path)
27 Path(hog_fd_dirname).mkdir(parents=True, exist_ok = True)
28 # print(fd.shape)
29 np.save(hog_fd_path, fd)

Figure 5. Code used to extract HOG Features from the dataset

age by replicating hand-designed HOG features[4]. This
method utilizes past computer vision knowledge to train
deep networks that can be fine-tuned, and uses pedestrian
detection as one of the evaluated downstream tasks. While
this paper attempts to replicate HOG features using a deep
network, it doesn’t isolate the benefits and drawbacks of the
HOG feature map itself, which we seek to analyze in this
paper.

The second paper attempts to pretrain the network with a
similar objective[9]. Rather than predicting labeled pairs of
an image and its respective HOG feature-map, they perform
a self-supervised pretraining by masking a part of the input
image and predicting the feature map of the masked area.
Similar to the first paper, they only consider which feature
map used in pretraining gives the best downstream perfor-
mance. Our aim rather is to examine the direct effects of
using HOG in the pedestrian detection task.

3. Experiment Approach

In our research, we adopted a comprehensive approach to
train neural networks for the task of object detection, par-
ticularly focusing on pedestrian detection in urban environ-
ments. The methodology encapsulates a rigorous and sys-
tematic approach to training neural networks for object de-
tection tasks. It emphasizes the importance of accuracy,

generalization, and robustness in model training, ensuring
that the developed models are not only precise in their cur-
rent environment but are also adaptable to new, unseen sce-
narios. This approach is instrumental in advancing the field
of computer vision, particularly in applications involving
pedestrian detection in urban settings.

3.1. HOG Gradient Extraction

We convert each image in the dataset into a HOG feature
descriptor using the code shown in Figure 5, and save a copy
of the HOG visualization (as shown in Figures 7 and 12)
along side the RGB images and HOG feature descriptors
themselves.

To generate the HOG feature descriptors, it follows the
following steps:
1. Compute a gradient, which consists of magnitude and

direction for each pixel of the image, as shown in Figure
2.

2. Divide image into cells, represented by the blue boxes in
Figure 6. We use 16× 16 for the size of our cells.

3. Group the cells into Nxcell×Nycell blocks, represented
by the red box in Figure 6. The blocks uses a sliding
window approach (e.g. cell 1 and 2 form a block, then
cell 2 and 3 form another block, etc). We use 2×2 blocks
of 4 cells.

4. For each cell, compute a histogram of gradients with



Figure 6. The image being grouped into cells (blue boxes) and
cells being grouped into blocks (red box), and each cell having a
histogram of gradient [6].

Nbins bins. We chose Nbins = 9 so that the width of
each bin is 20 degrees, for a total of 180 degrees of gra-
dient directions. The height of each bin in the histogram
is the sum of all magnitudes within the bin width of 20
degrees.

5. Finally, normalize the cell histograms within each block.
A HOG feature descriptor is represented by a 5-

dimensional feature vector: Nxblock ×Nyblock ×Nxcell ×
Nycell × Nbins, where Nxblock and Nyblock are the num-
ber of blocks in each direction, Nyblock and Nxcell are the
number of cells in each block, and Nbins is the number of
bins.

Our input images extracted from the ”ROAD++” dataset
[5] have 1920× 1280 pixels. After HOG extraction, we get
a HOG feature descriptor with size 79 × 119 × 2 × 2 × 9.
We observe that extracting HOG feature vector for every
pixel in the image runs at only 2 fps, which is not ideal for
real-time inference. We decide to resize the images by 1/3,
speeding up the extraction to 5 fps. This gives us a final
HOG feature descriptor of with size 23× 35× 2× 2× 9.

3.2. Transforming HOG Feature Descriptor for
ResNet18

ResNet18 is designed to be trained on raw image pixels that
are usually C × H × W vectors, where C is the number
of channels (i.e 3 channels for RGB), and H × W are the
height and width of the images. However, the HOG feature
descriptor that we extracted are of shape 23 × 35 × 2 ×
2 × 9 as described in the section above. In order to use
HOG feature descriptor as input to the ResNet18, we have
to convert this 5 dimensional vector into the 3 dimensional
vector. We decided the last 3 dimensions for number of cells

and number of bins can be combined into the C dimension,
resulting in 2 × 2 × 9 = 36 channels. We then transpose
vector to bring the C dimension to the front, giving us a
C ×H ×W = 36× 23× 35 vector.

3.3. Training

The training process is initiated with a custom function,
which takes the neural network model, training, and val-
idation data loaders as inputs. This function is meticu-
lously crafted to guide the model through several epochs
of learning, balancing the optimization of weights and bi-
ases to enhance the model’s predictive accuracy. At the
core of this process is the use of CrossEntropyLoss, a
standard loss function in classification tasks, which mea-
sures the performance of the model in classifying the input
data correctly. The optimization of the model parameters
is achieved through Stochastic Gradient Descent (SGD),
a widely used optimization algorithm in machine learning
that adjusts the model’s parameters iteratively to minimize
the loss function.

During each epoch of training, the model undergoes a
forward pass where it makes predictions on the training
data. Following this, a backward pass is conducted, where
the gradients of the loss function with respect to the model
parameters are computed and used to update these param-
eters. This iterative process helps in refining the model’s
ability to identify and classify objects within images accu-
rately.

3.4. Validation

Validation plays a crucial role in this methodology. Post-
training, the model is evaluated on a separate set of data not
seen during the training phase. This evaluation is crucial for
assessing the generalizability and robustness of the model.
Metrics such as validation loss and accuracy are computed
to gauge the model’s performance. Additionally, precision
and recall are derived from the confusion matrix, offering
deeper insights into the model’s efficacy in correctly identi-
fying objects, particularly pedestrians.

The most effective model, as determined by its perfor-
mance on the validation dataset, is preserved for subsequent
use. This model saving step is crucial, as it allows for the re-
tention of a version of the model that has demonstrated the
highest proficiency in classifying objects within the given
constraints of the dataset.



Figure 7. Visualization of HOG Feature Descriptors. The lines in the right image show the gradient directions with the highest magnitudes
of each histogram.

Figure 8. HOG Visualization of pedestrians

4. Results

4.1. Runtime comparison

As part of our experiments, we gathered data on the model’s
runtime during both training and inference. At training time
we measured the amount of time it took for one full pass
through the entire dataset. At inference time we measured
the average time it took for one input to be run. We hypoth-
esized that the runtime would be inversely proportional to
model complexity and input feature size. We expected the
ResNet models to take longer than the perceptron model
and 1-layer Conv network. We also expected models using
the high dimensional raw RGB image inputs to take longer
than the models which used HOG features as inputs. The
experiment results are consistent with this hypothesis, with
ResNet on RGB images taking the most time, followed by
ResNet on HOG features, 1-layer Conv on HOG features,
then the single layer perceptron on HOG features.

We see a drastic drop in runtime when switching from
RGB inputs to HOG features as inputs, whereas we only see
a small speedup when switching from ResNet to the simpler
models. From this observation we draw the conclusion that

most of the boost in runtime comes from using the HOG
feature maps rather than using simpler models.

4.2. Performance comparison

Since we are benchmarking the classification task, we mea-
sure the performance using precision, recall, and accuracy.
We enforce class balance in the labels, so accuracy is still
informative on the model performance. We hypothesized
that the performance would be proportional to the model
compelxity and input feature complexity. We expected the
ResNet models to perform better since they can capture
more complex relations, and we expected models using the
raw RGB image inputs to perform better since it has access
to more information in the data without compression. Our
experiment results are consistent with our hypothesis except
one case. We originally expected the 1-layer Conv network
to outperform the fully-connected network, but noted that
the 1-layer Conv network actually has less parameters than
the fully connected layer, and is reasonable that it could per-
form worse.

We see a minor decrease in performance when switching
from RGB inputs to HOG features as inputs, whereas we
see a larger dropoff when switching from ResNet to simpler
models. From this observation we draw the conclusion that
using HOG features incurs a smaller drop in performance
compared to switching to a simpler model.

4.3. Performance-Runtime tradeoff

From our analyses of our results from the runtime and per-
formance experiments, we can see that HOG feature maps
do very well. When switching from RGB image inputs to
HOG feature map inputs, we speed up the training time by
over 100 times, while only incurring a 1.5% decrease in ac-
curacy. We draw the conclusion that HOG feature maps are
a highly effective way to reduce computing resources while



1 # define model types
2 def resnet18_hog():
3 model = torchvision.models.resnet18(weights = None)
4 model.conv1 = torch.nn.Conv2d(2*2*9, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=

False)
5 model.fc = torch.nn.Linear(in_features=512, out_features=2, bias=True)
6 return model
7

8 def linear_hog():
9 model = nn.Sequential(

10 nn.Flatten(),
11 nn.Linear(28980, 2, bias=True)
12 )
13 return model
14

15 class conv1_hog(nn.Module):
16 def __init__(self):
17 super().__init__()
18

19 self.model = nn.Sequential(
20 nn.Conv2d(9, 1, kernel_size=(16, 8)),
21 nn.Flatten(),
22 nn.Linear(1953,2)
23 )
24 def forward(self,x):
25 x = x.view(-1,9,46,70)
26 return self.model(x)

Figure 9. Code showing our three model architectures that take HOG feature descriptors as input

Model Time (s) Precision Recall Accuracy (%)
RGB ResNet18 475.88 1.0 0.99 99.6
HoG ResNet18 3.80 0.98 0.97 98.1
HoG Fully-Connected 2.48 0.95 0.94 93.4
HoG 1-layer Conv 3.42 0.90 0.89 90.1

Figure 10. Comparing our four models. Results show that using HOG as input significantly reduces training time, while maintaining
comparable accuracy.

maintaining comparable performance in the task of pedes-
trian detection.

4.4. Failure cases

We analyzed failure cases on the fully connected network
over the HOG features. We present 2 samples from the
false positives and 2 samples from the false negatives to ex-
amine. Within the false positive predictions, there is one
image which actually contains a pedestrian on the sidewalk,
indicating some error in the dataset labeling. In the second
image we see there is a lot of glare and distortion in the
image which possibly caused the error.

Within the false negatives, there is one image in the dark
with very low lighting. It is hard to tell by looking at the
image if there is a pedestrian, which likely caused the er-
ror. In the second image, it doesn’t look like there are any
pedestrians at all, which likely is another dataset labelling
issue.

4.5. Visualized filters

One purpose of including the 1-layer conv network in our
experiments was to determine the viability of the classical
method of hand-designing a filter over the HOG features.
We wanted to compare this technique to modern ones by
searching for the optimal filter using backprop with a 1-
layer Conv network, then applying the filter over the HOG
features. One benefit of this technique is its interpretability,
since we can examine the kernels themselves to see what the
model is ”seeing”. Since there is one filter for each chanel,
and there is one chanel for each orientation in the HOG,
there are 9 total filters. By stacking these filters toether and
treating the stacked filters as a HOG with 9 channels, we can
visualize it as an HOG as shown in the figure below. Unfor-
tunately, this resulting filter is not highly interpretable. We
can make out a general shape which could be a pedestrian,
but it is not clear. Though this result is not unexpected, as



Figure 11. False positive predictions

Figure 12. False negative predictions

this kernel operates on the HOG features, which themselves
may not be as interpretable by our eyes compared to raw
RGB images.

Figure 13. Visualization of 1-layer Conv network filters

Figure 14. Raw Image Resnet

Figure 15. HoG Resnet

5. Discussion

5.1. Reduced Training Time

We showed that training on HOG feature descriptors have
about 125× speed up compared to training on raw image
pixels. This significant decrease in training time could mean
that it takes much shorter time to iterate between different



Figure 16. HoG Fully Connected CNN

Figure 17. HoG 1-Layer CNN

models and hyper-parameters, allowing companies and re-
search institutions to rapidly test and experiment with new
ideas.

5.2. Savings on Computing Resources

The powerful GPUs required for training large neural net-
work models are usually shared resources due to their high
costs. Cloud computing allows researchers to borrow GPUs
and they are usually priced per hour used. This means that
the reduction in training time also means reduction in cost.
Moreover, it allows researchers to use personal computers
at home to train the models. We experimented with training
our HOG ResNet18 model on a laptop CPU and per-epoch
training time is only about 52 seconds, which is a 9× speed
up compared to training on RGB images with a GPU.

5.3. Real time applications

Real-time pedestrian detection is a crucial task for enabling
safe autonomous vehicles. Not only does training time gets
reduced, we also observe significant speed up during infer-
ence of the model. However, the HOG extraction becomes
the bottleneck, running at only 5 fps during inference time.
This is mainly due to the implementation of HOG being on
a CPU as opposed to GPU, which can significantly speed up
HOG extraction by computing the histogram of each cell in
parallel.

5.4. Future Work

Our models are trained to detect whether a person exists in
an image, which is consistent with the original HOG paper
[1]. In the original paper, the dataset consists of images of
human and non-human in which the images with human are

all front and center. Our dataset, however, have pedestrians
of different scale and locations in the images (as shown in
Figure 4), making it harder to classify whether the image
has a pedestrian or not.

In future work, we would like to train models that can
perform bounding box detection, which provides scale and
location of the pedestrian in the image. One approach to
this is to utilize the network architecture of Faster R-CNN
[2]. The architecture first uses convolutional layers to per-
form feature extraction, and then feed the feature extrac-
tion into a Region Proposal Network (RPN) that provide
Regions of Interest (RoIs), which then get fed into another
network for classification. We could skip the convolutional
layers and feed HOG feature descriptors directly into the
RPN and classification layers.

6. Individual Contributions
• Asher Mai: Downloaded dataset, wrote code to ex-

tract HOG feature descriptors and visualizations in big
batches, and set up experiments for HOG ResNet and
RGB ResNet.

• Matthew Tang: Set up experiments for 1-layer CNN, and
fully-connected layer, ran all the experiments on desktop
with GPU, and visualized the filter for 1-layer CNN.

• Sid Ahuja: experimented with different existing HOG
feature extration implementations, did literature review
for background and related work, wrote the Introduction,
Background, and existing work sections of the paper.

References
[1] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05),
pages 886–893 vol. 1, 2005. 1, 2, 9

[2] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 1440–1448,
2015. 9

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 1, 2

[4] Ming-Yu Liu, Arun Mallya, Oncel Tuzel, and Xi Chen. Unsu-
pervised network pretraining via encoding human design. In
2016 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, 2016. 4

[5] Will Maddern, Geoffrey Pascoe, Matthew Gadd, Dan Barnes,
Brian Yeomans, and Paul Newman. Real-time kinematic
ground truth for the oxford robotcar dataset. arXiv preprint
arXiv: 2002.10152, 2020. Available at https://sites.
google.com/view/road-plus-plus/dataset. 2,
3, 5

[6] Dahi Nemutlu. Hog feature descriptor, 2022. Avail-
able at https://medium.com/@dnemutlu/hog-
feature-descriptor-263313c3b40d. 2, 5

https://sites.google.com/view/road-plus-plus/dataset
https://sites.google.com/view/road-plus-plus/dataset
https://medium.com/@dnemutlu/hog-feature-descriptor-263313c3b40d
https://medium.com/@dnemutlu/hog-feature-descriptor-263313c3b40d


[7] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[8] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
Scalability in perception for autonomous driving: Waymo
open dataset. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.
2

[9] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan
Yuille, and Christoph Feichtenhofer. Masked feature predic-
tion for self-supervised visual pre-training, 2023. 4


	. Introduction
	. Background
	. Training Dataset
	. Histogram of Gradients
	. Existing work

	. Experiment Approach
	. HOG Gradient Extraction
	. Transforming HOG Feature Descriptor for ResNet18
	. Training
	. Validation

	. Results
	. Runtime comparison
	. Performance comparison
	. Performance-Runtime tradeoff
	. Failure cases
	. Visualized filters

	. Discussion
	. Reduced Training Time
	. Savings on Computing Resources
	. Real time applications
	. Future Work

	. Individual Contributions

