
Digital Notes With Any Pen on Any Surface

Group Members: Asher Mai (hanlinm2)
Pauline Lu (pauline4)

Video Demo

Motivation and Impact:
Our final project is to allow users to use any stylus to draw or write on any surface. The

method would involve using a vertical camera, like a webcam, to detect the location of a person’s
moving pen tip to discern what that person is drawing or writing on any surface in front of the
camera. We chose this topic because we always wanted to utilize the benefits of digital
note-taking in middle and high school but we did not have access to the resources such as an
expensive stylus and tablets. A software like this will allow users to enjoy the benefits of digital
note-taking without buying expensive styluses and special tablets. When we first started with this
project, we embarked with the hope of learning more about single-view geometry and Harris
corner detection, and intended for both of these topics to form the integral technical components
of this project. However, we realized that we needed to use different approaches for better and
faster results.

Approach:
We prepare an A4 paper with four corners taped with green masking tape, and place it on

the table in front of the webcam.

We use color thresholding to get the four clusters of paper corner locations. We make the
assumption that each paper corner point cluster falls in each of the four quadrants of the camera
frame, and we separately average the threshold point clusters in each of the four quadrants to get
four precise corner points shown in blue text below.

https://www.youtube.com/watch?v=yeBxkBcJyF4

We use these four paper corner points and the four points of an on-screen canvas as
correspondents to solve for a homography transform matrix H. This matrix H will be used to
transform the on-camera pen location to the on-screen canvas location (i.e.)𝑥 𝑥' 𝑥' = 𝐻𝑥

The user can press Q to confirm the calibration, move the paper away, and start drawing
with a pen that also has green masking tape on the pen tip for color thresholding shown below.
The drawing will be shown on the screen, and the user can press Q to quit or press C to clear
canvas.

Results:
Video Demo
Our system works at around 15 frames per second. The text and drawing shown on

canvas closely match the user’s intended pen trajectory, although higher frame rate is needed to
improve smoothness. We find that the drawings are more precise when the pen is closer to the
camera (top of canvas) due to there being more canvas pixels per inch of the table closer to the
camera. The color thresholding for the paper and the pen are very robust and enable the user to
very easily calibrate the working surface as well as very easily move the pen in natural writing
and drawing motions without much loss in accuracy.

The significance of our project is that, without spending money on expensive tablets and
styluses, anyone can set up this drawing environment anywhere with any pen as long as they
have the taped paper and pen in their backpack.

https://www.youtube.com/watch?v=yeBxkBcJyF4

Implementation Details:
Our project uses Python, as well as the OpenCV, and Numpy libraries. We used OpenCV

for video capture, color thresholding, adding text, and drawing on the canvas. Numpy is used to
store and process the camera frames and canvas, and for solving the homography transform
matrix. We referenced lecture 18 on how to set up the linear equations and solve for
homography:

We referenced the link below for how to use color thresholding and drawing lines on
canvas after we obtain the homography transform matrix.
https://learnopencv.com/creating-a-virtual-pen-and-eraser-with-opencv/

Challenge/Innovation:
Our original idea involved using PyAutoGUI to open up a blank GoodNotes notebook

and have the mouse select the pen tool and move it around in accordance with the pen
movements picked up by the camera. However, we discovered that the latency with the mouse
movements on PyAutoGUI was too high. One possible solution to the PyAutoGUI latency
problem is to implement it with threading, but we ended up simplifying our implementation a bit
by pivoting to just using the OpenCV canvas and line drawing functions for the on-screen
interpretation of the pen movements.

We additionally ran into some problems with our original idea of using an object tracker
to track the pen location and Harris corner detection for the pen tip, and edge detection to detect
the edges of the paper on the table. Upon implementation of these corner detections, we quickly
realized that the Harris corner detection was picking up on a lot of extraneous corner points that

https://learnopencv.com/creating-a-virtual-pen-and-eraser-with-opencv/

were not relevant to the pen tip and any movements that were not slow and deliberate with the
pen would result in a blur, causing the object tracker to lose track of the pen. We faced similar
problems with the edge detection that we tried to use to detect the physical paper on the table. In
order to overcome these issues, we decided to make the switch to using color thresholding
instead, where bright green tape is used to mark the four corners of the canvas, and a object
tracking box was manually applied to the pen tip during the calibration step and locked on to the
tip of the pen as it moves during the writing process.

With color thresholding, we were able to calibrate the canvas surface, but the object
tracker would still often lose track of our pen tip. Thus, we decided to apply color thresholding to
the pen tip as well, with the same bright green tape used to mark the pen tip. With color
thresholding, the tracking became a lot more robust, it enabled us to move the pen around with
more ease and speed, and the frame rate was improved.

After color thresholding the calibration paper corners, we thought about using the
k-means algorithm (with k = 4) to turn the four corner clusters of points into 4 precise corner
points. However, the iterative nature of the k-means algorithm meant that it would slow down the
frame rate for the calibration step. We came up with the assumption that each of the four point
clusters falls into each of the four quadrants of the camera frame, which sped up our calculation a
lot.

We believe that since we were able to explore different possible solutions and
implementations and analyze the trade-offs and results of each method, and eventually
implement color thresholding on top of homography transform for the whole system to work
successfully in real time, which we believe constitutes a moderately complex technique, that we
deserve at least 15 out of the 20 possible challenge and innovation points for this project.

